Mouse betaine-homocysteine S-methyltransferase deficiency reduces body fat via increasing energy expenditure and impairing lipid synthesis and enhancing glucose oxidation in white adipose tissue.
نویسندگان
چکیده
Betaine-homocysteine S-methyltransferase (BHMT) catalyzes the synthesis of methionine from homocysteine. In our initial report, we observed a reduced body weight in Bhmt(-/-) mice. We initiated this study to investigate the potential role of BHMT in energy metabolism. Compared with the controls (Bhmt(+/+)), Bhmt(-/-) mice had less fat mass, smaller adipocytes, and better glucose and insulin sensitivities. Compared with the controls, Bhmt(-/-) mice had increased energy expenditure, with no changes in food intake, fat uptake or absorption, or in locomotor activity. The reduced adiposity in Bhmt(-/-) mice was not due to hyperthermogenesis. Bhmt(-/-) mice failed to maintain a normal body temperature upon cold exposure because of limited fuel supplies. In vivo and ex vivo tests showed that Bhmt(-/-) mice had normal lipolytic function. The rate of (14)C-labeled fatty acid incorporated into [(14)C]triacylglycerol was the same in Bhmt(+/+) and Bhmt(-/-) gonadal fat depots (GWAT), but it was 62% lower in Bhmt(-/-) inguinal fat depots (IWAT) compared with that of Bhmt(+/+) mice. The rate of (14)C-labeled fatty acid oxidation was the same in both GWAT and IWAT from Bhmt(+/+) and Bhmt(-/-) mice. At basal level, Bhmt(-/-) GWAT had the same [(14)C]glucose oxidation as did the controls. When stimulated with insulin, Bhmt(-/-) GWAT oxidized 2.4-fold more glucose than did the controls. Compared with the controls, the rate of [(14)C]glucose oxidation was 2.4- and 1.8-fold higher, respectively, in Bhmt(-/-) IWAT without or with insulin stimulus. Our results show for the first time a role for BHMT in energy homeostasis.
منابع مشابه
Betaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet--CORRIGENDUM.
In the abstract, these sentences (page 1, line 5) should be: 'Additionally, hepatic betaine-homocysteine methyltransferase concentration as well as its mRNA abundance and lecithin level were found increased (P < 0. 05) by betaine supplementation in both basal diet-fed rats and high-fat diet-fed rats. Betaine administration in high-fat diet-fed rats exhibited a higher (P < 0.05) concentration of...
متن کاملBetaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet.
To assess the effects of betaine on hepatic lipid accumulation and investigate the underlying mechanism, thirty-two male Sprague-Dawley rats weighing 100 (sd 2·50) g were divided into four groups, and started on one of four treatments: basal diet, basal diet with betaine administration, high-fat diet and high-fat diet with betaine administration. The results showed that no significant differenc...
متن کاملBetaine supplementation decreases plasma homocysteine concentrations but does not affect body weight, body composition, or resting energy expenditure in human subjects.
BACKGROUND Betaine (trimethylglycine) is found in several tissues in humans. It is involved in homocysteine metabolism as an alternative methyl donor and is used in the treatment of homocystinuria in humans. In pigs, betaine decreases the amount of adipose tissue. OBJECTIVE The aim of the study was to examine the effect of betaine supplementation on body weight, body composition, plasma homoc...
متن کاملEffects of DGAT1 deficiency on energy and glucose metabolism are independent of adiponectin.
Mice lacking acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), an enzyme that catalyzes the terminal step in triacylglycerol synthesis, have enhanced insulin sensitivity and are protected from obesity, a result of increased energy expenditure. In these mice, factors derived from white adipose tissue (WAT) contribute to the systemic changes in metabolism. One such factor, adiponectin, increases...
متن کاملImproved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet.
Free fatty acid receptor 2 (Ffar2), also known as GPR43, is activated by short-chain fatty acids (SCFA) and expressed in intestine, adipocytes, and immune cells, suggesting involvement in lipid and immune regulation. In the present study, Ffar2-deficient mice (Ffar2-KO) were given a high-fat diet (HFD) or chow diet and studied with respect to lipid and energy metabolism. On a HFD, Ffar2-KO mice...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 287 20 شماره
صفحات -
تاریخ انتشار 2012